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Abstract. A perturbative approach is used to obtain small-amplitude solitary structures for an
extended nonlinear Sabainger equation. These structures have the form of dark and anti-dark
solitary wave solutions, closely connected with the Korteweg—deVries solitons. The solutions
found are valid in wavelength regions, such as those applicable in the anomalous dispersion
regime, which are not accessible by the conventional nonlineard8ictyer equation. The
dynamics of the derived structures in the presence of the Raman effect is also studied by means
of a Korteweg—deVries—Burgers equation. The obtained results are applied to the problem of
propagation of femtosecond duration pulses in nonlinear optical fibres.

1. Introduction

In the present paper we study solitary structures of an extended nonlinedrdBgier
(ENLS) equation, of the following form:
2 3
ig—z - g% +qlgl? - ixg + iua%(qlqlz) + ivq%(lqlz) =0. @

Equation (1) has important applications in nonlinear optics [1], where it has been used
to describe femtosecond pulse propagation in nonlinear optical fibres, up to distances much
less than the absorption length [2-5]. The parametir the sign of the group velocity
dispersion (GVD), whilex, u and v are positive real constants. This equation is not in
general integrable by means of the inverse scattering transform (IST) [6]. Nevertheless, it
can be transformed, under certain conditions, into an IST integrable system, such as the
higher-order NLS (forr :  : v = 1 : 6 : 0) [3,5], thederivative NLS equation (for
Arpiv=0:1:0)[7], or the complex modified Korteweg—deVries (KdV) equation (for
Arpiv=1:6:3)[8].

For the special cas@ = © = v = 0 the ENLS equation is reduced to the IST
integrable conventional NLS equation, which possesses two different types of soliton
solutions depending om (+1). In the case = —1 (anomalous GVD) the NLS equation
has thebright soliton solution [9] (satisfying zero boundary conditions), while in the case
s = 41 (normal GVD), it has the dark soliton solution [10] (satisfying the boundary
conditions|¢| — U (U = constant) att — 4oc0). A limiting case of the latter is the
small-amplitudedark soliton, closely related to the KdV soliton [11], which is given by

2

q(t,0)=U <1 — %secﬁ E) exp[iUzg +i¢g(t, )] (2)
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where the paramete$ (5 « 1) is related to the depth of the dark solito& =

SU(T FUc £6%U¢/2) ande(t, ¢) = 28/[1 + exp(2E)]. Another kind of optical solitary
structure, closely connected with the dark soliton, is the so-calf¢iddark soliton, which
exhibits the form of a bright pulse on a continuous wave (cw) background (i.e. it is a dark
soliton with reverse sign amplitude). This type of structure has been simultaneously derived
by Vekslerchik [12] forA = v = 0 and, in the small-amplitude lim$? « 1), by Kivshar

[13] for u =v =0.

Unlike the conventional NLS equation (where the values aletermines the type of
soliton solution), the ENLS equation has been found to support bright soliton solutions for
both the anomalous and normal dispersion regimes 1) [7]. Additionally, families of
bright and dark solitary wave solutions have been obtained [14] for both regimes, even in
the case of pulse propagation at the so-called zero dispersion point (corresponding to zero
GVD) [15]. On the other hand, both dark and anti-dark soliton solutions have been obtained
in the literature [12, 13]solely in the case of the normal dispersion regime=(+1).

As far as the ENLS equation (1) with = +1 is concerned, to our knowledge, the
conditions for small-amplitude dark or anti-dark solitary wave formation, as well as the
solutions themselves, are not available to date. The present work covers this gap by
dealing with the derivation of these solutions, in terms of a KdV, by using an asymptotic
perturbation technique. Dark solitary wave solutions are obtained and it is demonstrated
that are validboth the normal and anomalous dispersion regimes=(+1). This result
indicates the possibility of dark solitary wave solutions in wavelength regions not accessible
to the conventional form and certain perturbed versions of the NLS, such as the anomalous
dispersion regimes(= —1). Additionally, anti-dark solitary wave solutions have been
obtained in the normal dispersion regime=£ +1), and the possibility of transformations
from the dark to the anti-dark solitary structure is demonstrated. The dynamics of the
derived solitary structures under the so-called stimulated Raman effect [1] have also been
studied in the context of a KdV-Burgers (KdV-B) equation. It was found that the solitary
structures experience a decrease in their amplitudes and/or their velocities, depending on
the direction of propagation and the wavelength region.

The paper is organized as follows. In section 2, the ENLS equation is connected with a
KdV equation by means of a perturbation method [11]. The small-amplitude solitary waves
are presented in section 3, while section 4 is devoted to the influence of the Raman effect.
Finally, in section 5, the main conclusions of this work are reviewed.

2. Connection of the ENLS equation with the KdV equation

In order to derive the small-amplitude solitary structures of equation (1) having the form
of dark or anti-dark solitary waves, a perturbative approach similar to the one mentioned in
the introduction, will be used. As a first step, one may observe that equation (1) possesses
the cw solutionycy (7, ¢) = U exp(iU?¢) (U = constant). Then, a solution of the following

form is considered,

q(tr,8) =[U +u(r, O)]expliU?¢ +ip(r, )] (3)

whereu(z, ¢) and¢(z, ¢) are unknown real functions to be determined. It is readily seen
thatu(z, ¢) and¢(t, ¢) express an amplitude and a phase modulation of the cw background,
respectively. Apparently, before proceeding with the determination of these functions, it
is important to consider the modulational stability f, because results obtained for an
unstable background do not have any physical purport.
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The modulational instability in equation (1) has been investigated in [16] for the
anomalous dispersion case & —1) and it has been found thaf,, is stable for
U2(u+v)>—1 > 0. In our case, we can easily verify that this result is generalized
to also include the normal dispersion case<(—1), by the inequality/?(u + v)?> +s > 0.

This shows that physically acceptable solutions may also be derived for every value of
U(u + v) in the normal dispersion regime.

Upon substituting equation (3) into equation (1), the imaginary part of the resulting
equation reads
du 2¢ du d¢g 9%u ¢ 9%¢ (a¢>

ot

a_s —s 2 S U 3"
ot ( Warz " Sarar T TRUTW TS F ot

+U @+ 20)(U + ZM)E + Bu + 2u)u2£ =0 (4)
while the real part of the resulting equation reads

d 3%u d
—(U + )ﬁ_%a 5t 5 (U+u)( f) +2U°% + 3Uu? +u® +A(U+u)

2udp  du 9% 3\ A
B l— "+ —— ) U L) —uWi4ud =
+ (81281+81812> ( +u)<81> e +M)8t

—3ulu(U + ”)% =0. (5)

3(15

Then, introducing an arbitrary small paramet€d < ¢ < 1), the asymptotic expansions
u=y " e%u, (T, Z)andp = Y o2 e2~1u, 4(T, Z) for the unknown functions(z, ¢)
and¢ (z, ¢) are assumed, whefe = s(t — A¢), Z = ¢3¢ and A is a parameter representing
the inverse of the wave velocity in the-¢ reference frame (to be determined). The leading
order parts for equations (4) and (5), respectively, are

31/{0 sU 82¢0
8T 2 9T?

=0 O(&?) : 2Uuo + (A — pU )ﬂ =0.

(6)
Assuming thatA — nU? # 0, equations (6) lead to the determination of the unknown

parameterA, which may have two distinct valuesd, and A_, given by the following
equation:

O(e® : [A — Bu +20)U? —

Ay =UUR +v) £ U+ )% +5)Y2). (7

Thus, in the linear limit, the wave excitations of the cw background may propagate
with two different velocities. Note that in the anomalous dispersion regime: (—1),
the inequalityU (u + v) > 1 must hold forA. to be real. This condition verifies the
modulational stability of the background. In this regime, bath and A_ are positive.
In the normal dispersion regime & +1) on the other hand, the velocity, is always
positive, while the velocityA_ can take both positive (fot/ (u(3u + 2v))Y¥? > 1) and
negative (forU(u(3u + 2v))Y? < 1) values. This means that propagation in opposite
directions is possible, depending on the amplitudeof the cw background and/or the
coefficientsy andv of the higher-order nonlinear terms.

Proceeding to the next order, namely to ordeeQ, equation (4) reads

dug  duodpo s %o 8%ug d¢ho 0%¢ho

— = ug 33U —

9z 9T aT 2 °9r2 aT3 aT aT?
8141 N 82¢1

3u+20U%2 - Al— — Zup—— =0 8
+HEu+ 20U ]8T SU0 s 8

+2U (Bu + ZV)uo7
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while, to order Qe%), equation (4) reads

dpo s %o s 30\ 33¢o 2 d¢o 2
_y2 2 U)ot @uu? - Auos? +3U
0z 2972 2 <8T AU s — G Juogy T3V
2 2 01

Now using equations (6), the temporal derivativespgfcan be expressed in terms of
ug. Then, substitution of the resulting expressions into equations (8) and (9), after some
algebra, leads to the following KdV equation for the amplituge

co% — cluo% + CQ% =0 (20)
where
co=U?+ s(A — pU?? (11)
c1=—2(A — pU?)[3U + sBu + 2v)(A — pnU?)]

12U (A —3uU? — 6sAU? — AiU:Uz> (12)
and

c2 = —[s(A — pU? (G + M(A — pU?) + AU?. (13)

In this way, the ENLS equation (1), has been connected with the KdV equation (10).
Thus, the soliton solutions of equation (10), which will be presented in the following section,
are the small-amplitude solitary structures for the ENLS equation. As will be seen, these
structures have the form of dark or anti-dark solitary wave solutions. It should be noticed
that the term ‘solitary wave’ rather than ‘soliton’ solution is used, due to the fact that the
ENLS equation is not in general IST integrable, as mentioned in the introduction.

3. Small-amplitude dark or anti-dark solitary waves

The small-amplitude solitary structures for equation (1) can directly be obtained upon using
equation (10). Assuming thabcico, # 0, it is readily seen that these solutions have the
following form,

uo(T, Z) = —1—26213 seclf 6 0 = k(T —&(2)) (14)
c1

wherek is the amplitude of the conventional KdV soliton [&];Z) is given by
4c
£(2) = C—Ozkzz + & (15)

andégg is a constant depending on the initial conditions. Notice that a direct comparison of
equation (14) and the asymptotic expansioruofiith equation (2) leads to a connection
between the formal perturbative parameteand the parameters of the derived solitary
structures, expressed by the simple expres&@dn,/c1)k?e? = §2U. In addition, using the
second of equations (6), the unknown functigyt7, Z) can directly be obtained by means
of equation (14):
24U6‘2
c1(A = pU?)
A closer look at equation (14) shows that propagation of different kinds of solitary
structures is possible. Thus, equation (14) describes both the case of dark pulse solutions

oo(T, Z) = k tanhe. (16)
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(for c2/c1 > 0) and the case of anti-dark pulse solutions ¢fgtc; < 0). On the other hand,
equation (15) shows that the direction of propagation of either the dark or the anti-dark
pulse depends on the sign of thg/co. Thus, equation (14) demonstrates both cases of
propagation to the right (foro/co > 0) and propagation to the left (fak/co < 0).

The derived small-amplitude structures, i.e. the dark and anti-dark solitary wave
solutions in equation (14), form a new set of approximate solitary wave solutions of the
ENLS equation, which can be supportedhath the normal { = +1) and the anomalous
(s = —1) dispersion regimes. As far as the latter regime is concerned, the aforementioned
result is in sharp contrast with the conventional form (or certain perturbed versions [11—
13]) of the NLS equation, where dark soliton (or solitary wave) solutions hold solely in the
normal dispersion regime. It is also noted that since the derived solutions are simultaneously
amplitude- and phase-modulated, they cannot be considered as a small-amplitude special
case of other solitary solutions of the ENLS equation derived elsewhere (e.g. [14]).

Let us proceed now with the investigation of dark or anti-dark solitary wave formation,
which depends on the signs of the coefficientsc:, c2, and apply the results to the problem
of femtosecond pulse propagation in nonlinear optical fibres. Inspection of equations (11)—
(13) shows that these signs depend on the values of the fibre parametesnd v, the
amplitude U of the cw background and the paramatewhich takes two distinct values..,
as shown in equation (7), for eithee= +1 ors = —1. Itis evident that the possible changes
of the values of these signs may arise from either the change of the fibre parameters (for
example due to axial inhomogeneity), or the change of the amplitude of the cw background.
However, the available (commercial) fibres are actually axially uniform, since they exhibit a
variation of the core radius of order 1% and a negligible variation of the refractive index [1].
On the other hand, the present application deals with pulse propagation in the femtosecond
time scale, where the values of the fibre parameters change slightly [4, 7]. Therefore, in
order to determine the signs af/c; andc,/co, the fibre parameters have been kept fixed at
the typical values. = 0.2, u = 0.8 andv = 0.25, which refer to graded-index monomode
fibres and correspond to an initial pulse widjl~ 50 fs [4]. On the other hand, the quantity
U(u + v) has been considered as a variable lying in the interval (0, 10y fer+1, or
in the interval (1, 10) fosx = —1 (note that in this cas& (1 + v) > 1 for A to be real).

In this way, the ‘switching’ of the signs af,/c1 and c,/co for a varyingU (1 + v) has
been studied and the results, which are divided in two subcases (anomalous and normal
dispersion regimes), are as follows.

3.1. Anomalous dispersion regime=£ —1)

When the velocityA is A = A, the coefficientsy ¢; andc, do not change sign, namely
they arecp < 0, c1 > 0, ¢z > 0. Thus, solution (14) has the form of a dark pulse propagating
to the left. On the other hand, when the velocityis A = A_, the signs of the coefficients
c1 andc; do not change, namely they are> 0 andc, > 0, but the sign of the coefficient
co changes forU(u + v) = 1.85. Thus, in this casey/c1 < 0, while ¢p/co > 0 for
U(u+v) < 1.85andcy/co < 0 for U(u +v) > 1.85. Solution (14) describes again a dark
solitary wave, which propagates to the right (left) o +v) < 1.85 U (n +v) > 1.85).

3.2. Normal dispersion regime & +1)

When the velocityA is A = A, the coefficients in equations (11)—(13) do not change
sign, namely they arey > 0, ¢1 < 0, ¢ < 0. Thus, in this case, solution (14) represents a
dark pulse propagating to the left. On the other hand, when the velacityA = A _, the
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sign of the coefficienty does not change, namedy > 0, but the signs of the coefficients

c1 and ¢, change as follows:c; > 0 for 1L04 < U(u +v) < 1.33 andc; < O for
U(uw+v) <104 orU(u+v) > 1.33, whilecy > 0 for U(u + v) < 0.65 andc, < 0 for
U(u+v) > 0.65. Thus, equation (14) represents an anti-dark pulse propagating to the right
for 0 < U(u+v) < 0.65, a dark pulse propagating to the left fo69 < U (u +v) < 1.04,

an anti-dark pulse propagating to the left fob4 < U(n + v) < 1.33 and finally a dark
pulse propagating to the left for33 < U(u + v) < 10.

It is important to mention that at the two critical poirtfgu +v) = 1.04 and 1.33 where
the coefficientc; of the nonlinear term of the KdV equation (10) vanishes, small-amplitude
dark-to-anti-dark and anti-dark-to-dark solitary wave transformations occur, respectively.
On the other hand, it should be mentioned that these transformations do not occur at the
critical point U (u + v) = 0.65 where the linear dispersion coefficientof equation (10)
vanishes. This fact arises from the analysis of a KdV equation with coefficients exhibiting
changes of their signs, which has been performed in the past by using both numerical [17]
and analytical [18] methods. It is also worth noticing that the above-mentioned results
do not significantly depend on higher-order nonlinear terms, i &@uo/dT), which may
additionally be taken into account [18].

In conclusion, small-amplitude dark solitary waves can be formed in both the normal
and the anomalous dispersion regimes. However, small-amplitude anti-dark solitary wave
formation, as well as transformations from one mode to the other, can solely be observed
in the normal dispersion regime.

4. Influence of the Raman effect

The dynamics of the solitary structures found in the previous section has been studied in the
absence of the Raman effect [1]. This effect gives rise to a frequency down-shift of bright
solitons and leads to fission of soliton bound states [3]. On the other hand, the Raman
effect leads to temporal self-shift of dark solitons and, consequently, its influence is more
destructive [11]. In the framework of the ENLS equation, the Raman effect is effectively
described with an additional term on the right-hand side of equation (1), which now takes
the following form [2-5],
% - %% +4qlql* - Ik% + Iuf(qlqlz) +ivg - (Iql ) =€q (Iql ) (17)
where ¢ is a positive real constant representing the Raman gain parameter. At low
frequencies of the small-amplitude perturbations the Raman ¢eidq|?)/dt does not
alter significantly the modulational stability of the background [16]. Therefore, we may
modify equation (5) by adding on its right-hand side an additional term of the form
2¢(U?+u?+2u)(du/dt), which amounts to adding a ternt/2(e/¢)(dug/d7) on the right-
hand side of equation (9). As a result, the first-order evolution equation for the amplitude
uo takes the form
2

Co% + Cluo?;;? + sz(;]l:t;) = 63% (18)
wherecz = (¢/e)U?. Equation (18) has the form of a KdV-B equation. As can be seen,
for ¢c3 = 0 equation (18) is reduced to a KdV equation, while for= 0 it is reduced to
a Burgers equation. The KdV-B equation does not possess soliton solutions. However,
this equation has travelling solutions in the form of shock waves with oscillatory tails [19].
Notice that similar shock waves were found in the context of nonlinear optics [20] in terms
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of a NLS equation withs = 41, driven by the Raman term. Nevertheless, these kinds of
solutions are not connected with the problem in hand, since our purpose is to investigate
the influence of the Raman effect on the derived solitary structures.

For the aforementioned reasons, we restrict ourselves to thegase« 1, in order to
study the dynamics of solutions (14) in the presence of the Raman teg0f by means
of the perturbation theory of solitons [21, 22]. According to this approach, the solution of
equation (18) is expressed as

uo(T,Z) = uy,(0, k) + Au(0, Z) (29)

whereu, (0, k) has the form of the solitary pulse described by equation (14yar@, Z) is

the correction to the solitary pulse in the adiabatic approximation. As far as the amglitude
and the velocity &/dZ of the solitary part of the solution are concerned, they are assumed
to be not constants, but slowly-varying functionszfi.e.

us (0, k) = —&kz(Z) seclf 6 0 = k(2)[T — £(2)]. (20)
€1
The evolution of these parameters is described according to the following equations,
k(Z) = k(0)(1+ Z/Zo)™Y/? (21)
where
Co 15
_ 22
C3 16](2(0) ( )
and
d%‘ 4C2 2 8C3
— = —"k“(Z —k(2). 23
4z~ ()+1560() (23)

On the other hand, the deformatiaxu (6, Z) is transformed into a flat tail at a few
solitary lengths behind the solitary structure. The asymptotic&w®, Z) are given by

Au(®, Z) ~ %kz(zw exp(—26) 01 (24)
1
and
16¢3 ,
MO, 2) ~ — L KDL+ 6% exp2)] 6 < -1 (25)
c1

Equations (21)—(23) show that the evolution of the parameteand & /dZ of the
solitary structures (14) depends on the signs of the coefficigngd ¢, (note thatcs is
always positive). This means that the aforementioned evolution is closely connected to the
direction of the motion of the solitary structure. According to the relevant investigation
presented in the previous section, the behaviour of the small-amplitude solitary structures
is described as follows.

In the anomalous dispersion case £ —1), the dark solitary waves propagating to
the left (2/co < 0) increase their amplitude (sineg < 0) and decrease their velocity.
However, the dark solitary wave propagating to the right/d, > 0) decreases both its
amplitude (sinceg > 0) and its velocity. This structure is expected to disappear at distances
of order Zy, where Z, is given by equation (22). As far as the normal dispersion case
(s = +1) is concerned, both the dark and the anti-dark solitary waves propagating to the
left (c2/co < 0) decrease their amplitudegy (> 0) and increase their velocity. On the
other hand, the anti-dark solitary wave propagating to the rightc¢ > 0) decreases both
its amplitude ¢ > 0) and its velocity. These structures are also expected to disappear at
distances of ordeZ.
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In conclusion, under the influence of the Raman effect, the solitary structures propagating
to the right experience a decrease in both their amplitudes and their velocities. On the
other hand, the evolution of the solitary structures propagating to the left depends on the
wavelength region: in the anomalous dispersion regime, whete —1, they increase
their amplitudes and decrease their velocities, while in the normal dispersion regime, where
s = +1, they decrease their amplitudes and increase their velocities.

5. Conclusions

The problem of small-amplitude solitary structure formation for an extended nonlinear
Schiddinger equation has been considered. This model is suitable for describing propagation
of femtosecond duration pulses in nonlinear optical fibres. Upon using a perturbation
technique, the aforementioned equation has been connected with the Korteweg—deVries
equation and small-amplitude dark solitary wave solutions have been derived for both the
normal and anomalous dispersion regimes.

This result is in sharp contrast with the conventional form and certain perturbed versions
of the nonlinear Sclidinger equation, where dark soliton or dark solitary wave solutions
hold solely in the normal dispersion regime. In addition, in this latter regime, small-
amplitude anti-dark solitary wave solutions have been obtained and the possibility of
transformations from the dark to the anti-dark solitary structure has been demonstrated.
The results obtained in this work generalize the results of previous important theoretical
works (e.g. [11-13]). This is due to the fact that all the physically significant higher-order
effects have been simultaneously taken into account in the nonlineaidsufper equation.

Finally, the influence of the Raman effect on the derived small-amplitude solitary
structures has also been investigated. It has been found that the dynamics of these structures
is governed by a KdV-B equation and, under certain conditions, their behaviour has been
studied by means of the perturbation theory for solitons. The results that have been obtained
show that the solitary structures experience a decrease in their amplitudes and/or their
velocities, depending on the direction of propagation and the wavelength region.
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