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Abstract. A perturbative approach is used to obtain small-amplitude solitary structures for an
extended nonlinear Schrödinger equation. These structures have the form of dark and anti-dark
solitary wave solutions, closely connected with the Korteweg–deVries solitons. The solutions
found are valid in wavelength regions, such as those applicable in the anomalous dispersion
regime, which are not accessible by the conventional nonlinear Schrödinger equation. The
dynamics of the derived structures in the presence of the Raman effect is also studied by means
of a Korteweg–deVries–Burgers equation. The obtained results are applied to the problem of
propagation of femtosecond duration pulses in nonlinear optical fibres.

1. Introduction

In the present paper we study solitary structures of an extended nonlinear Schrödinger
(ENLS) equation, of the following form:

i
∂q

∂ζ
− s

2

∂2q

∂τ 2
+ q|q|2 − iλ

∂3q

∂τ 3
+ iµ

∂

∂τ
(q|q|2) + iνq

∂

∂τ
(|q|2) = 0. (1)

Equation (1) has important applications in nonlinear optics [1], where it has been used
to describe femtosecond pulse propagation in nonlinear optical fibres, up to distances much
less than the absorption length [2–5]. The parameters is the sign of the group velocity
dispersion (GVD), whileλ, µ and ν are positive real constants. This equation is not in
general integrable by means of the inverse scattering transform (IST) [6]. Nevertheless, it
can be transformed, under certain conditions, into an IST integrable system, such as the
higher-order NLS (forλ : µ : ν = 1 : 6 : 0) [3, 5], thederivative NLS equation (for
λ : µ : ν = 0 : 1 : 0) [7], or the complex modified Korteweg–deVries (KdV) equation (for
λ : µ : ν = 1 : 6 : 3) [8].

For the special caseλ = µ = ν = 0 the ENLS equation is reduced to the IST
integrable conventional NLS equation, which possesses two different types of soliton
solutions depending ons (±1). In the cases = −1 (anomalous GVD) the NLS equation
has thebright soliton solution [9] (satisfying zero boundary conditions), while in the case
s = +1 (normal GVD), it has the dark soliton solution [10] (satisfying the boundary
conditions |q| → U (U = constant) atτ → ±∞). A limiting case of the latter is the
small-amplitudedark soliton, closely related to the KdV soliton [11], which is given by

q(τ, ζ ) = U

(
1 − δ2

2
sech2 4

)
exp[iU2ζ + iφ(τ, ζ )] (2)
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where the parameterδ (δ � 1) is related to the depth of the dark soliton,4 =
δU(τ ∓ Uζ ± δ2Uζ/2) andφ(τ, ζ ) = 2δ/[1 + exp(24)]. Another kind of optical solitary
structure, closely connected with the dark soliton, is the so-calledanti-dark soliton, which
exhibits the form of a bright pulse on a continuous wave (cw) background (i.e. it is a dark
soliton with reverse sign amplitude). This type of structure has been simultaneously derived
by Vekslerchik [12] forλ = ν = 0 and, in the small-amplitude limit(δ2 � 1), by Kivshar
[13] for µ = ν = 0.

Unlike the conventional NLS equation (where the value ofs determines the type of
soliton solution), the ENLS equation has been found to support bright soliton solutions for
both the anomalous and normal dispersion regimes (s = ±1) [7]. Additionally, families of
bright and dark solitary wave solutions have been obtained [14] for both regimes, even in
the case of pulse propagation at the so-called zero dispersion point (corresponding to zero
GVD) [15]. On the other hand, both dark and anti-dark soliton solutions have been obtained
in the literature [12, 13],solely in the case of the normal dispersion regime (s = +1).

As far as the ENLS equation (1) withs = ±1 is concerned, to our knowledge, the
conditions for small-amplitude dark or anti-dark solitary wave formation, as well as the
solutions themselves, are not available to date. The present work covers this gap by
dealing with the derivation of these solutions, in terms of a KdV, by using an asymptotic
perturbation technique. Dark solitary wave solutions are obtained and it is demonstrated
that are validboth the normal and anomalous dispersion regimes (s = ±1). This result
indicates the possibility of dark solitary wave solutions in wavelength regions not accessible
to the conventional form and certain perturbed versions of the NLS, such as the anomalous
dispersion regime (s = −1). Additionally, anti-dark solitary wave solutions have been
obtained in the normal dispersion regime (s = +1), and the possibility of transformations
from the dark to the anti-dark solitary structure is demonstrated. The dynamics of the
derived solitary structures under the so-called stimulated Raman effect [1] have also been
studied in the context of a KdV–Burgers (KdV–B) equation. It was found that the solitary
structures experience a decrease in their amplitudes and/or their velocities, depending on
the direction of propagation and the wavelength region.

The paper is organized as follows. In section 2, the ENLS equation is connected with a
KdV equation by means of a perturbation method [11]. The small-amplitude solitary waves
are presented in section 3, while section 4 is devoted to the influence of the Raman effect.
Finally, in section 5, the main conclusions of this work are reviewed.

2. Connection of the ENLS equation with the KdV equation

In order to derive the small-amplitude solitary structures of equation (1) having the form
of dark or anti-dark solitary waves, a perturbative approach similar to the one mentioned in
the introduction, will be used. As a first step, one may observe that equation (1) possesses
the cw solutionqcw(τ, ζ ) = U exp(iU2ζ ) (U = constant). Then, a solution of the following
form is considered,

q(τ, ζ ) = [U + u(τ, ζ )] exp[iU2ζ + iφ(τ, ζ )] (3)

whereu(τ, ζ ) andφ(τ, ζ ) are unknown real functions to be determined. It is readily seen
thatu(τ, ζ ) andφ(τ, ζ ) express an amplitude and a phase modulation of the cw background,
respectively. Apparently, before proceeding with the determination of these functions, it
is important to consider the modulational stability ofqcw′ because results obtained for an
unstable background do not have any physical purport.



Solitary structures for an ENLS equation 3633

The modulational instability in equation (1) has been investigated in [16] for the
anomalous dispersion case (s = −1) and it has been found thatqcw is stable for
U2(µ + ν)2 − 1 > 0. In our case, we can easily verify that this result is generalized
to also include the normal dispersion case (s = −1), by the inequalityU2(µ + ν)2 + s > 0.
This shows that physically acceptable solutions may also be derived for every value of
U(µ + ν) in the normal dispersion regime.

Upon substituting equation (3) into equation (1), the imaginary part of the resulting
equation reads
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while the real part of the resulting equation reads
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Then, introducing an arbitrary small parameterε (0 < ε � 1), the asymptotic expansions
u = ∑∞

n=1 ε2nun−1(T , Z) andφ = ∑∞
n=1 ε2n−1un−1(T , Z) for the unknown functionsu(τ, ζ )

andφ(τ, ζ ) are assumed, whereT = ε(τ −3ζ), Z = ε3ζ and3 is a parameter representing
the inverse of the wave velocity in theτ–ζ reference frame (to be determined). The leading
order parts for equations (4) and (5), respectively, are

O(ε3) : [3 − (3µ + 2ν)U2]
∂u0

∂T
+ sU

2

∂2φ0

∂T 2
=0 O(ε2) : 2Uu0 + (3 − µU2)

∂φ0

∂T
= 0.

(6)

Assuming that3 − µU2 6= 0, equations (6) lead to the determination of the unknown
parameter3, which may have two distinct values3+ and 3−, given by the following
equation:

3± = U [U(2µ + ν) ± (U2(µ + ν)2 + s)1/2]. (7)

Thus, in the linear limit, the wave excitations of the cw background may propagate
with two different velocities. Note that in the anomalous dispersion regime (s = −1),
the inequalityU(µ + ν) > 1 must hold for3± to be real. This condition verifies the
modulational stability of the background. In this regime, both3+ and 3− are positive.
In the normal dispersion regime (s = +1) on the other hand, the velocity3+ is always
positive, while the velocity3− can take both positive (forU(µ(3µ + 2ν))1/2 > 1) and
negative (forU(µ(3µ + 2ν))1/2 < 1) values. This means that propagation in opposite
directions is possible, depending on the amplitudeU of the cw background and/or the
coefficientsµ andν of the higher-order nonlinear terms.

Proceeding to the next order, namely to order O(ε5), equation (4) reads
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while, to order O(ε4), equation (4) reads

−U
∂φ0

∂Z
− s

2

∂2u0
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+ s

2
U

(
∂φ0
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+ λU
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∂T
+ 3Uu2
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Now using equations (6), the temporal derivatives ofφ0 can be expressed in terms of
u0. Then, substitution of the resulting expressions into equations (8) and (9), after some
algebra, leads to the following KdV equation for the amplitudeu0,

c0
∂u0

∂Z
− c1u0

∂u0

∂T
+ c2

∂3u0

∂T 3
= 0 (10)

where

c0 = U2 + s(3 − µU2)2 (11)

c1 = −2(3 − µU2)[3U + s(3µ + 2ν)(3 − µU2)]

+2U

(
3 − 3µU2 − 6sλU2 − sU2

3 − µU2

)
(12)

and

c2 = −[s(3 − µU2)( 1
4 + λ(3 − µU2)) + λU2]. (13)

In this way, the ENLS equation (1), has been connected with the KdV equation (10).
Thus, the soliton solutions of equation (10), which will be presented in the following section,
are the small-amplitude solitary structures for the ENLS equation. As will be seen, these
structures have the form of dark or anti-dark solitary wave solutions. It should be noticed
that the term ‘solitary wave’ rather than ‘soliton’ solution is used, due to the fact that the
ENLS equation is not in general IST integrable, as mentioned in the introduction.

3. Small-amplitude dark or anti-dark solitary waves

The small-amplitude solitary structures for equation (1) can directly be obtained upon using
equation (10). Assuming thatc0c1c2 6= 0, it is readily seen that these solutions have the
following form,

u0(T , Z) = −12c2

c1
k2 sech2 θ θ = k(T − ξ(Z)) (14)

wherek is the amplitude of the conventional KdV soliton [6],ξ(Z) is given by

ξ(Z) = 4c2

c0
k2Z + ξ0 (15)

andξ0 is a constant depending on the initial conditions. Notice that a direct comparison of
equation (14) and the asymptotic expansion ofu with equation (2) leads to a connection
between the formal perturbative parameterε and the parameters of the derived solitary
structures, expressed by the simple expression(24c2/c1)k

2ε2 = δ2U . In addition, using the
second of equations (6), the unknown functionφ0(T , Z) can directly be obtained by means
of equation (14):

φ0(T , Z) = 24Uc2

c1(3 − µU2)
k tanhθ. (16)

A closer look at equation (14) shows that propagation of different kinds of solitary
structures is possible. Thus, equation (14) describes both the case of dark pulse solutions
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(for c2/c1 > 0) and the case of anti-dark pulse solutions (forc2/c1 < 0). On the other hand,
equation (15) shows that the direction of propagation of either the dark or the anti-dark
pulse depends on the sign of thec2/c0. Thus, equation (14) demonstrates both cases of
propagation to the right (forc2/c0 > 0) and propagation to the left (forc2/c0 < 0).

The derived small-amplitude structures, i.e. the dark and anti-dark solitary wave
solutions in equation (14), form a new set of approximate solitary wave solutions of the
ENLS equation, which can be supported inboth the normal (s = +1) and the anomalous
(s = −1) dispersion regimes. As far as the latter regime is concerned, the aforementioned
result is in sharp contrast with the conventional form (or certain perturbed versions [11–
13]) of the NLS equation, where dark soliton (or solitary wave) solutions hold solely in the
normal dispersion regime. It is also noted that since the derived solutions are simultaneously
amplitude- and phase-modulated, they cannot be considered as a small-amplitude special
case of other solitary solutions of the ENLS equation derived elsewhere (e.g. [14]).

Let us proceed now with the investigation of dark or anti-dark solitary wave formation,
which depends on the signs of the coefficientsc0, c1, c2, and apply the results to the problem
of femtosecond pulse propagation in nonlinear optical fibres. Inspection of equations (11)–
(13) shows that these signs depend on the values of the fibre parametersλ, µ and ν, the
amplitude U of the cw background and the parameter3, which takes two distinct values3±,
as shown in equation (7), for eithers = +1 or s = −1. It is evident that the possible changes
of the values of these signs may arise from either the change of the fibre parameters (for
example due to axial inhomogeneity), or the change of the amplitude of the cw background.
However, the available (commercial) fibres are actually axially uniform, since they exhibit a
variation of the core radius of order 1% and a negligible variation of the refractive index [1].
On the other hand, the present application deals with pulse propagation in the femtosecond
time scale, where the values of the fibre parameters change slightly [4, 7]. Therefore, in
order to determine the signs ofc2/c1 andc2/c0, the fibre parameters have been kept fixed at
the typical valuesλ = 0.2, µ = 0.8 andν = 0.25, which refer to graded-index monomode
fibres and correspond to an initial pulse widtht0 ≈ 50 fs [4]. On the other hand, the quantity
U(µ + ν) has been considered as a variable lying in the interval (0, 10) fors = +1, or
in the interval (1, 10) fors = −1 (note that in this caseU(µ + ν) > 1 for 3 to be real).
In this way, the ‘switching’ of the signs ofc2/c1 and c2/c0 for a varyingU(µ + ν) has
been studied and the results, which are divided in two subcases (anomalous and normal
dispersion regimes), are as follows.

3.1. Anomalous dispersion regime (s = −1)

When the velocity3 is 3 = 3+, the coefficientsc0 c1 andc2 do not change sign, namely
they arec0 < 0, c1 > 0, c2 > 0. Thus, solution (14) has the form of a dark pulse propagating
to the left. On the other hand, when the velocity3 is 3 = 3−, the signs of the coefficients
c1 andc2 do not change, namely they arec1 > 0 andc2 > 0, but the sign of the coefficient
c0 changes forU(µ + ν) ∼= 1.85. Thus, in this casec2/c1 < 0, while c2/c0 > 0 for
U(µ+ ν) < 1.85 andc2/c0 < 0 for U(µ+ ν) > 1.85. Solution (14) describes again a dark
solitary wave, which propagates to the right (left) forU(µ + ν) < 1.85 (U(µ + ν) > 1.85).

3.2. Normal dispersion regime (s = +1)

When the velocity3 is 3 = 3+, the coefficients in equations (11)–(13) do not change
sign, namely they arec0 > 0, c1 < 0, c2 < 0. Thus, in this case, solution (14) represents a
dark pulse propagating to the left. On the other hand, when the velocity3 is 3 = 3−, the
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sign of the coefficientc0 does not change, namelyc0 > 0, but the signs of the coefficients
c1 and c2 change as follows:c1 > 0 for 1.04 < U(µ + ν) < 1.33 and c1 < 0 for
U(µ + ν) < 1.04 or U(µ + ν) > 1.33, while c2 > 0 for U(µ + ν) < 0.65 andc2 < 0 for
U(µ+ν) > 0.65. Thus, equation (14) represents an anti-dark pulse propagating to the right
for 0 < U(µ+ ν) < 0.65, a dark pulse propagating to the left for 0.65 < U(µ+ ν) < 1.04,
an anti-dark pulse propagating to the left for 1.04 < U(µ + ν) < 1.33 and finally a dark
pulse propagating to the left for 1.33 < U(µ + ν) < 10.

It is important to mention that at the two critical pointsU(µ+ν) = 1.04 and 1.33 where
the coefficientc1 of the nonlinear term of the KdV equation (10) vanishes, small-amplitude
dark-to-anti-dark and anti-dark-to-dark solitary wave transformations occur, respectively.
On the other hand, it should be mentioned that these transformations do not occur at the
critical point U(µ + ν) = 0.65 where the linear dispersion coefficientc2 of equation (10)
vanishes. This fact arises from the analysis of a KdV equation with coefficients exhibiting
changes of their signs, which has been performed in the past by using both numerical [17]
and analytical [18] methods. It is also worth noticing that the above-mentioned results
do not significantly depend on higher-order nonlinear terms, e.g.u2

0(∂u0/∂T ), which may
additionally be taken into account [18].

In conclusion, small-amplitude dark solitary waves can be formed in both the normal
and the anomalous dispersion regimes. However, small-amplitude anti-dark solitary wave
formation, as well as transformations from one mode to the other, can solely be observed
in the normal dispersion regime.

4. Influence of the Raman effect

The dynamics of the solitary structures found in the previous section has been studied in the
absence of the Raman effect [1]. This effect gives rise to a frequency down-shift of bright
solitons and leads to fission of soliton bound states [3]. On the other hand, the Raman
effect leads to temporal self-shift of dark solitons and, consequently, its influence is more
destructive [11]. In the framework of the ENLS equation, the Raman effect is effectively
described with an additional term on the right-hand side of equation (1), which now takes
the following form [2–5],

i
∂q

∂ζ
− s

2

∂2q

∂τ 2
+ q|q|2 − iλ

∂3q

∂τ 3
+ iµ

∂

∂τ
(q|q|2) + iνq

∂

∂τ
(|q|2) = εq

∂

∂τ
(|q|2) (17)

where ε is a positive real constant representing the Raman gain parameter. At low
frequencies of the small-amplitude perturbations the Raman termεq∂(|q|2)/∂τ does not
alter significantly the modulational stability of the background [16]. Therefore, we may
modify equation (5) by adding on its right-hand side an additional term of the form
2ε(U2 +u2 +2u)(∂u/∂τ), which amounts to adding a term 2U2(ε/ε)(∂u0/∂τ) on the right-
hand side of equation (9). As a result, the first-order evolution equation for the amplitude
u0 takes the form

c0
∂u0

∂Z
+ c1u0

∂u0

∂T
+ c2

∂3u0

∂T 3
= c3

∂2u0

∂T 2
(18)

wherec3 = (ε/ε)U2. Equation (18) has the form of a KdV–B equation. As can be seen,
for c3 = 0 equation (18) is reduced to a KdV equation, while forc2 = 0 it is reduced to
a Burgers equation. The KdV–B equation does not possess soliton solutions. However,
this equation has travelling solutions in the form of shock waves with oscillatory tails [19].
Notice that similar shock waves were found in the context of nonlinear optics [20] in terms
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of a NLS equation withs = +1, driven by the Raman term. Nevertheless, these kinds of
solutions are not connected with the problem in hand, since our purpose is to investigate
the influence of the Raman effect on the derived solitary structures.

For the aforementioned reasons, we restrict ourselves to the casec3/c2 � 1, in order to
study the dynamics of solutions (14) in the presence of the Raman term (ε 6= 0) by means
of the perturbation theory of solitons [21, 22]. According to this approach, the solution of
equation (18) is expressed as

u0(T , Z) = us(θ, k) + 1u(θ, Z) (19)

whereus(θ, k) has the form of the solitary pulse described by equation (14) and1u(θ, Z) is
the correction to the solitary pulse in the adiabatic approximation. As far as the amplitudek

and the velocity dξ/dZ of the solitary part of the solution are concerned, they are assumed
to be not constants, but slowly-varying functions ofZ, i.e.

us(θ, k) = −12c2

c1
k2(Z) sech2 θ θ = k(Z)[T − ξ(Z)]. (20)

The evolution of these parameters is described according to the following equations,

k(Z) = k(0)(1 + Z/Z0)
−1/2 (21)

where

Z0 = c0

c3

15

16k2(0)
(22)

and
dξ

dZ
= 4c2

c0
k2(Z) + 8c3

15c0
k(Z). (23)

On the other hand, the deformation1u(θ, Z) is transformed into a flat tail at a few
solitary lengths behind the solitary structure. The asymptotics of1u(θ, Z) are given by

1u(θ, Z) ≈ 16c3

5c1
k2(Z)θ exp(−2θ) θ � 1 (24)

and

1u(θ, Z) ≈ −16c3

5c1
k(Z)[1 + θ2 exp(2θ)] θ � −1. (25)

Equations (21)–(23) show that the evolution of the parametersk and dξ/dZ of the
solitary structures (14) depends on the signs of the coefficientsc0 and c2 (note thatc3 is
always positive). This means that the aforementioned evolution is closely connected to the
direction of the motion of the solitary structure. According to the relevant investigation
presented in the previous section, the behaviour of the small-amplitude solitary structures
is described as follows.

In the anomalous dispersion case (s = −1), the dark solitary waves propagating to
the left (c2/c0 < 0) increase their amplitude (sincec0 < 0) and decrease their velocity.
However, the dark solitary wave propagating to the right (c2/c0 > 0) decreases both its
amplitude (sincec0 > 0) and its velocity. This structure is expected to disappear at distances
of order Z0, whereZ0 is given by equation (22). As far as the normal dispersion case
(s = +1) is concerned, both the dark and the anti-dark solitary waves propagating to the
left (c2/c0 < 0) decrease their amplitudes (c0 > 0) and increase their velocity. On the
other hand, the anti-dark solitary wave propagating to the right (c2/c0 > 0) decreases both
its amplitude (c0 > 0) and its velocity. These structures are also expected to disappear at
distances of orderZ0.
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In conclusion, under the influence of the Raman effect, the solitary structures propagating
to the right experience a decrease in both their amplitudes and their velocities. On the
other hand, the evolution of the solitary structures propagating to the left depends on the
wavelength region: in the anomalous dispersion regime, wheres = −1, they increase
their amplitudes and decrease their velocities, while in the normal dispersion regime, where
s = +1, they decrease their amplitudes and increase their velocities.

5. Conclusions

The problem of small-amplitude solitary structure formation for an extended nonlinear
Schr̈odinger equation has been considered. This model is suitable for describing propagation
of femtosecond duration pulses in nonlinear optical fibres. Upon using a perturbation
technique, the aforementioned equation has been connected with the Korteweg–deVries
equation and small-amplitude dark solitary wave solutions have been derived for both the
normal and anomalous dispersion regimes.

This result is in sharp contrast with the conventional form and certain perturbed versions
of the nonlinear Schrödinger equation, where dark soliton or dark solitary wave solutions
hold solely in the normal dispersion regime. In addition, in this latter regime, small-
amplitude anti-dark solitary wave solutions have been obtained and the possibility of
transformations from the dark to the anti-dark solitary structure has been demonstrated.
The results obtained in this work generalize the results of previous important theoretical
works (e.g. [11–13]). This is due to the fact that all the physically significant higher-order
effects have been simultaneously taken into account in the nonlinear Schrödinger equation.

Finally, the influence of the Raman effect on the derived small-amplitude solitary
structures has also been investigated. It has been found that the dynamics of these structures
is governed by a KdV–B equation and, under certain conditions, their behaviour has been
studied by means of the perturbation theory for solitons. The results that have been obtained
show that the solitary structures experience a decrease in their amplitudes and/or their
velocities, depending on the direction of propagation and the wavelength region.
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